Supplementary table 2 | Common challenges in volume status assessment in the acute setting | Parameter | View and technique | Relevant value(s) | Notes | |------------------------------------|---|---|---| | Static parameters | | | | | LV end-diastolic area | Short-axis LV on 2D echo | • < 5.5 cm ² /m ² | Might be marker of severe hypovolaemia, but no normal values Not valid in LV disease Might appear underfilled as a result of RV dysfunction, not hypovolaemia Might be affected by intracardiac shunt | | IVC
end-expiratory
dimension | Subcostal view,
maximal dimension
1–2 cm from IVC to RA
junction on M-mode
or 2D echo | • Spontaneous breathing:
<1 cm
• PPV: <1.5 cm | Affected by pressures: intrathoracic, intra-abdominal, and intrapericardial Right heart pathology affects IVC size; might have large IVC, but be profoundly hypovolaemic in the presence of any of these pathologies | | Tricuspid TDI | Apical four-chamber on TDI | • Velocity >1.5 cm/s | • Might reflect role of the right ventricle in limiting capacity of the heart to increase SV rather than hypovolaemia <i>per se</i> | | Dynamic parameters | | | | | $\Delta Peak$ aortic VTI | LVOT PW Doppler | >12% indicates up to 15% increase in SV | Sensitivity 90%, specificity 100%, but false positives likely for high tidal
volumes, and false negatives if low tidal volumes | | ΔIVC dimensions | Subcostal M-mode or
2D echo | • Spontaneous breathing:
%∆IVC >50% indicates
volume responsiveness
• PPV (IVC distensibility
index) >18% predicts
potential 15% increase in
SV in response to volume | Sensitivity 100%, specificity 90% Unreliable with prominent eustachian valve, large BSA, narrowing of IVC–RA junction, or tissue present in IVC | | SVC
collapsibility
index | TOE 90–100° in
mid-high oesophageal
view | • %ΔSVC >36% indicates potential 15% increase in SV in response to volume | Only in patients who are entirely passively ventilated | | Passive leg raising ΔSV | LVOT PW Doppler | SV increase of 12%
correlates with fluid
responsiveness | Sensitivity 77%, specificity 100% Must perform PLR correctly: passive change of patient position from semi-recumbent (45°) to supine Limitations: profound hypovolaemia, high intra-abdominal pressures, MCS, patient awareness/comfort, RV dysfunction | BSA, body surface area; Echo, echocardiography; IVC, inferior vena cava; LV, left ventricular; LVOT, left ventricular outflow tract; MCS, mechanical circulatory support; PLR, passive leg raising; PPV, positive pressure ventilation; PW, pulsed-wave; RA, right atrial; RV, right ventricular; SV, stroke volume; SVC, superior vena cava; TDI, tissue Doppler imaging; TOE, transoesophageal echocardiography; VTI, velocity time integral. NATURE REVIEWS | CARDIOLOGY www.nature.com/nrcardio